

This work has received funding from the European Union's Horizon 2020 research and innovation program under the GA-101000344

Lower stocking density in pigs: welfare, growth rate, and meat quality

E. Sell-Kubiak

A. Zaworska-Zakrzewska, A. Cieślak, M. Kasprowicz-Potocka, G. Cieleń, D. Łodyga, J. Składanowska-Baryza, A. Ludwiczak

Objective

How does stocking
density in the fattening
phase affect growth
performance, carcass
characteristics, intrinsic
meat quality, as well as
immunophysiological
parameters
and welfare assessment
in crossbreed pigs?

Data

- 1.0 vs 1.5 vs 2.0m²/pig
- 2 crossbreeds
- 2 seasons
- 2 commercial farms
- 102x DanBred pigs
- 80x [(Polish Large White x Polish Landrace) x (Duroc x Pietrain)]
- 2x 42 loins
- 2x 42 blood, intestinal, and liver samples

Methods

- Growth in 2 and 3 phases
- Meat intrinsic quality: pH, shear force, fatty acid (FA) profiles, crude protein and fat, colour
- Immunophysiological parameters: IgG, IgA, IgM, and antioxidant enzymes
- Welfare assessment based or adjusted WelfareQuality®
- Statistics two-way ANOVA group and sex of pig and PCA for FA

[(Polish Large White x Polish Landrace)

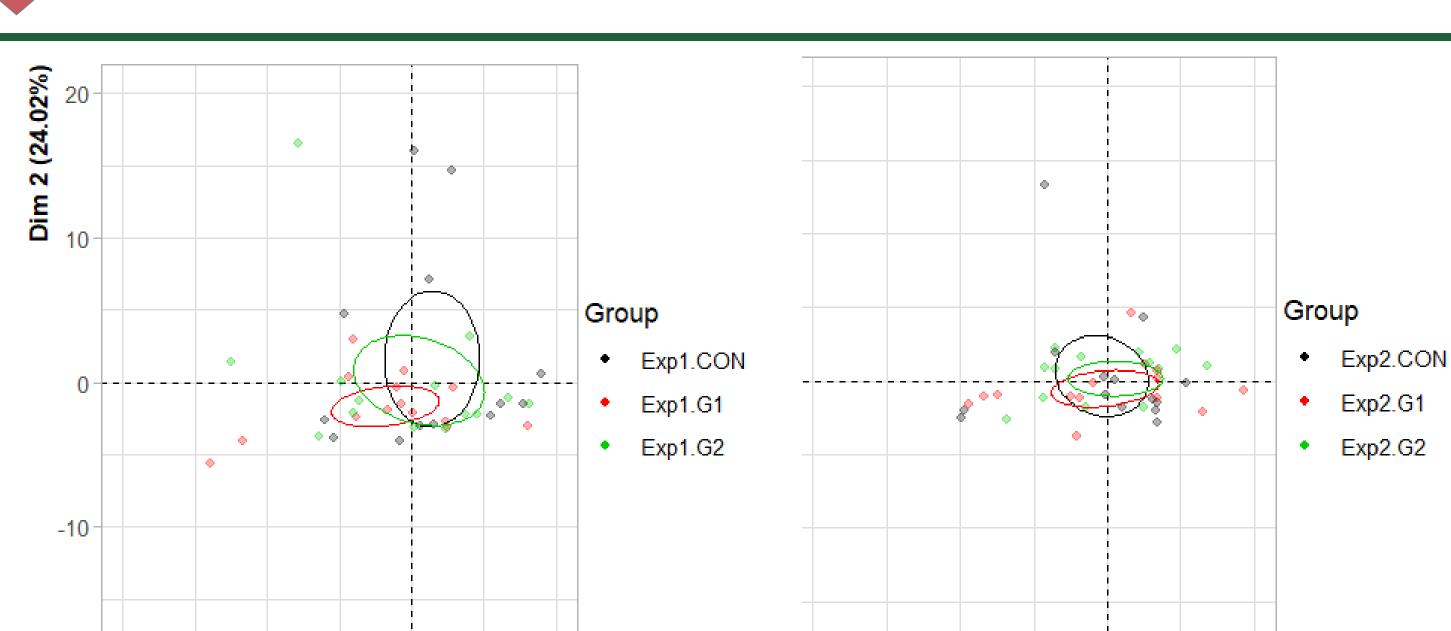
Results

Pigs in groups with more space grow faster, and have better immunophysiological levels,

BUT it might not financially compensate the farmer for lower stocking density.

Space allowance does not affect the intrinsic meat quality.

Based on PCA the breed has more effect on FA profile than m2/pig



Parameter

		raiailletei	Danbreed pigs				x (Duroc x Pietrain)] pigs			
		Experiment 1	Exp1.G1	Exp1.G2	Exp1.CON	p-value	Exp2.G1	Exp2.G2	Exp2.CON	p-value
		IgG, mg/mL	21.74 ^A	18.92 ^B	19.33 ^B	<0.001	16.95 ^c	18.17 ^B	22.35 ^A	<0.001
		IgM, mg/ml	7.47 ^A	6.17 ^B	6.65 ^B	<0.001	5.2	5.5	5.32	ns
		IgA, mg/mL	2.53	2.5	2.5	ns	3.62 ^B	2.27 ^c	4.97 ^A	<0.001
		IL-2, pg/mL	55.87 ^A	52.68 ^B	55.99 ^A	0.003	34.11 ^B	34.00 ^B	38.83 ^A	<0.001
		IL-6, pg/mL	7.11 ^A	11.63 ^B	7.81 ^A	<0.001	4.10 ^A	3.84 ^A	4.44 ^B	<0.001
		IL8, ng/ml	10.76 ^B	14.53 ^A	15.40 ^A	<0.001	18.52 ^B	17.17 ^c	27.65 ^A	<0.001
		IL-10, pg/mL	43.27	38.97	45.03	ns	30.88 ^A	28.53 ^B	31.25 ^A	<0.001
	9	Lactic acid, mmol/L	11	11.42	11.05	ns	1.12 ^B	1.28 ^A	1.04 ^c	<0.001
	Blood	LZM, mg/ml	1.26 ^A	1.13 ^B	1.05 ^B	<0.001	0.78 ^B	0.76 ^B	0.87 ^A	<0.001
	8	CLDN1, pg/ml	1.49 ^A	1.90 ^B	1.60 ^A	<0.001	1.31	1.39	1.41	ns
		CLDN3, pg/ml	1.25 ^A	1.41 ^A	1.04 ^B	<0.001	2.18	2.19	2.4	ns
		NO, nmol/mL	10.3	9.11	11.05	ns	43.73 ^B	47.81 ^A	32.25 ^c	<0.001
		MDA, μmol/L	1.97 ^c	2.22 ^B	2.55 ^A	<0.001	3.84 ^B	4.24 ^A	2.97 ^c	<0.001
		SOD, U/ml	7.75 ^B	9.8 ^A	7.82 ^B	<0.001	0.66 ^A	0.64 ^A	0.49 ^B	<0.001
		CAT, U/ml	2.90 ^B	3.32 ^A	2.35 ^c	<0.001	8.99 ^B	9.94 ^A	6.74 ^c	<0.001
		GSH, μmol/L	0.54 ^B	0.61 ^A	0.58 ^{AB}	0.008	7.36 ^A	5.73 ^B	7.02 ^A	<0.001
		FRAP, μmol/L	8.75 ^B	8.56 ^B	5.72 ^A	<0.001	169.91 ^A	162.49 ^B	157.75 ^B	<0.001
		MDA, μmol/g	2.49 ^B	2.71 ^B	3.12 ^A	<0.001	178.55 ^A	152.26 ^B	120.44 ^c	<0.001
	Liver	SOD, U/g	151.05 ^A	128.99 ^c	141.89 ^B	<0.001	11.44 ^B	13.16 ^A	11.03 ^B	<0.001
		CAT, U/g	131.01 ^A	102.9 ^B	125.22 ^A	<0.001	3.06 ^B	3.06 ^B	3.79 ^A	<0.001
		GSH, μmol/g	17.34 ^B	20.37 ^A	19.81 ^B	<0.001	19.19 ^A	19.67 ^A	18.27 ^B	0.045
	e	MDA, μmol/g	1.68 ^B	1.65 ^B	2.04 ^A	<0.001	67.99 ^A	61.87 ^B	53.85 ^c	<0.001
	stir	SOD, U/g	210.53 ^A	172.91 ^B	162.43 ^B	<0.001	1.65 ^A	1.72 ^A	0.75 ^B	<0.001
	Intestine	CAT, U/g	175.31 ^B	199.95 ^A	127.63 ^c	<0.001	16.95 ^c	18.17 ^B	22.35 ^A	<0.001
		GSH_umol/g	5 11 ^B	6.45 ^A	5 81 ^{AB}	0.001	5.20	5 50	5 32	ns

DanBreed pigs

Figure – Principal Component Analysis of fatty acids profile in DanBred (Exp1) and [(Polish Large White x Polish Landrace) x (Duroc x Pietrain)] (Exp2), where CON – control 1.0m²/pig, G1 – 1.5m²/pig, G2 – 2.0 m²/pig.

Conclusions

20

10

Dim 1 (34.30%)

- Pigs in group with 1.5 m2/pig grew faster than those in control and 2.0 m2/pig
- There were very few significant differences in carcass and meat quality parameters
- Space allowance does not affect fatty acid profile in two husbandry systems and two breeds

10

Dim 1 (43.80%)

• Moderate space (1.5 m²) seems to create optimal immunophysiological conditions